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Abstract

In this paper, an auto-Bécklund transformation is presented for the generalized
Burgers equation: u; + uy, + ouu, + omxax_luy = 0 (« is constant) by using
an ansatz and symbolic computation. Particularly, this equation is transformed
into a (1 + 2)-dimensional generalized heat equation w, + wy, = 0 by the
Cole-Hopf transformation. This shows that this equation is C-integrable.
Abundant types of new soliton-like solutions are obtained by virtue of the
obtained transformation. These solutions contain n-soliton-like solutions,
shock wave solutions and singular soliton-like solutions, which may be of
important significance in explaining some physical phenomena. The approach
can also be extended to other types of nonlinear partial differential equations
in mathematical physics.

PACS numbers: 02.30.1Ik, 05.45.Yv

1. Introduction

To date, many nonlinear soliton equations have been presented in nonlinear science
[1, 2]. Tt is of important significance to study their properties, such as Painlevé integrability,
C-integrability, Bicklund transformation, Darboux transformation, exact soliton solutions and
symmetries, etc. For example, the well-known Burgers equation [1-4]

U +uly — Uy, =0 (D)

has a remarkable property, that it can be transformed into a linear heat equation by using
the famous Cole—Hopf transformation [3, 4]. In 1990, Webb and Zank [5] considered the
Painlevé integrability of two higher-dimensional equations of the Burgers equation (1), i.e. the
(1 + 2)-dimensional Burgers equation

(I/l[ tunuy — uxx)x + Uyy = 0 (2)
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and the (1 + 3)-dimensional Burgers equation
(U + Uty — Uyy)y +Uyy +uz; =0. 3)

Recently, we have [6] extended the idea of Tasso [7], which was used to deduce the Burgers
hierarchy, to deduce two hierarchies of generalized Burgers equations in (2 + 1)-dimensional
space. The simplest example is

u,+uxy+otuuy+omx3x_]uy=0 4)

where 0, = 9/0y, 0 19, = 0, 0 I = 1 and « is a constant, which was obtained from the Lax
pair

Ox = ug ¢ = Vu(u, uy, uya-~-)¢

where V11 = —auV, — 3, V,, Vi = 3 'uy.

By using a series of transformations equation (4) reduces to the well-known Burgers
equation. It is clear that equation (4) is different from equation (2). Thus, we call equation (4)
the (1 + 2)-dimensional generalized Burgers equation, which describes wave propagation in
(2 + 1)-dimensional space. The motion described by equation (4) is an isolated wave, localized
in a small part of space. This will be shown in what follows. We [8] have given some
dromion-like solutions of equation (4) when o = 1. In this paper, we would like to obtain
an auto-Bécklund transformation (ABT) of equation (4) by using a new ansatz and symbolic
computation. Particularly, equation (4) can be transformed into the (2 + 1)-dimensional heat
equation by the Cole—Hopf transformation. As a consequence, many soliton-like solutions are
found by virtue of the obtained transformation.

The rest of the paper is organized as follows. In section 2, an ABT of equation (4) is
presented. In particular, equation (4) can be transformed into the (2 + 1)-dimensional heat
equation by the Cole—Hopf transformation. In section 3, abundant explicit exact soliton-like
solutions are obtained for equation (4) by some transformations with symbolic computation.
Finally, some conclusions and some problems are given.

2. Auto-Bicklund transformation of equation (4)

To deduce an ABT, we first introduce the following ideas:

(i) Hirota’s dependent variable transformation [9] introduces a dependent variable ¢ (x, 1)
with a differentiator acting on its function f(¢(x, 1)) = In(¢(x,1)).

(i) the Clarkson—Kruskal method [10] considers a general function F (x, t, ¢ (x, t)) and tries
to establish an ordinary differential equation (ODE) for ¢ (x, 7) so as to impose conditions
upon F and ¢.

(iii)) Wang [11] has presented the homogeneous balance method to seek the solution of the
given nonlinear partial differential equation (PDE)

u(x,y, 1) = a7 {wlz(x, y, )} + C. (5)

(iv) Fan and Zhang [12] have extended the homogeneous balance method to search for the
solution

u(x,t) = o {wlz(x, )]} + uo(x, t). (6)

(v) The above-mentioned ideas have been extended to many nonlinear PDEs [13-17].
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In the following, we would like to extend these ideas to equation (4). We assume that
equation (4) possesses the following solution

u(x,y, 1) = F(@, 0y, d){wlz(x, y, D} + G(x, y, 1) = 397 f(w(x, y, 1) +uo(x, y, 1) (7)
where m and n are parameters, and uo(x, y, t) is a function to be determined. According to the
rule of leading-order analysis [11-17], balancing the highest-order linear term (i.e. uy,) and
nonlinear terms (i.e. uu, or uxax_luy) leads to m = 1 and n = 0. Thus, equation (7) reduces
to

u(x,y,t) =0 flw(x,y, )] +uo(x, y, 1) = flwy +up (8)
where f' = %. With the aid of a symbolic computation package, Mathematica or Maple,
from equation (8) we have

ur = frwiwy + flwy +uo 9)
n,. 2 " " /

Uyy = frwiwy + frw,wy + 2 wewey, + f Wiy + Uy (10)

uuy = f/f”wfwy + f'2wxwxy + fuowywy, + fugywy + fugwyy + uottoy (11)

wd  uy = £ wiwy + fPwgwy + Fw?d oy + flwyor + fwed; oy (12)

Substituting equations (9)—(12) into equation (4) and collecting all homogeneous terms with
respect to partial derivatives of w(x, y, t), we have

(f" + 2af’f”)wfwy + [f”w,v)C + vy + 2 wewyy + oc(f/zwxwxy + fuowyw,
2 24-1
+ [Pweewy + fwio; uoy)] + [wxy + Wyy + o;(uoyu))C + UQWyy + Wylloy
—1 —1

+ Wy 0, uoy)]f/ + o + Uoxy + AUgUoy + QU0 D gy = 0. (13)
To fix the unknown function f(w), setting the coefficient of w2w, in equation (13) to zero
yields a nonlinear third-order ODE of f

f/// + de/f// =0 (14)

which indicates that the nonlinear terms (i.e. uuy and u,d; 'u,) and the highest-order linear
term (i.e. uy,) have been partially balanced. It is easy to show that equation (14) has the
solution

1
fw(x,y, 1) = ;lnw(x,y,t). (15)
From equation (15), we easily have the following relation
1
fr=—f" (16)
o

By using equations (14) and (16), equation (13) becomes an equation involving f”, f’ and
f% = 1. According to the linear independence of f”, f" and f° = 1, we have the following
system of over-determined PDEs with respect to the variables w(x, y, t) and uo(x, y, t):

Wy (w, + Wy + oUWy + othax_luoy) =0 (17)
0y (w, + Wy +ouow, + othf)x_]uoy) =0 (18)
Uy + Uoxy + AUl + otu()xax_luoy =0. (19)

From equation (19), it is clear that uq is just a solution of equation (1). Therefore, the
substitution of equation (15) into equation (8) leads to an ABT for equation (4)

1 0 1w,
uu4ﬁ=—ahmayﬁ+mw»m=;%+ww»0 (20)

o x|
where w and u satisfy equations (17)—(19).
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Remark. If we set uy = 0inthe ABT (20), then the ABT (20) becomes the famous Cole—Hopf
transformation of equation (4)

I wy
u(x,y,t):;g. 21)

Under the transformation, a bilinear equation of equation (1) is given by
W W — Wy Wy + WegyW — WyWyy =0 (22)

which can be simply reduced to the (2 + 1)-dimensional heat equation @, + w,, = 0 by using
the Cole—Hopf transformation (21).

3. Explicit and exact soliton-like solutions

By virtue of the ABT (20), we reduce equation (4) to a system of over-determined PDEs
(17)—(19). If we can obtain the solution (1o, w) of equations (17)—(19), then a solution u of
equation (4) is deduced from the ABT (20). Now we mainly consider equations (17)—(19).
We can see that the simple trial solution for the system of equations (17)—(19),
w(x,y, t) =1+explkx + By + yt +9) 23)

would lead to nothing but shock waves, where k, 8, y and § are constants.

Nevertheless, this clue inspires us to proceed further and to find solutions other than
solitary waves as follows:

Case 1. We propose that equations (17)—(19) have the following x-linear formal solution with
uop = constant, which is a solution of equation (4)
N

w(x,y, 1) =Py, 1)+ Z i exp[®;(y, 1)x + Wi(y, )] (24)

i=1
where u; = £1 and P;(y, 1), ©;(y, t) and V;(y, 1) are differentiable functions of y and ¢ only
to be determined later.
Substituting equation (24) into equations (17)—(19) with symbolic computation, we have
P +oaugPy, =0
0 +0;0;, +auy®;, =0 (25)
Vi + 0, + 0,V +aug¥;, = 0.
Therefore, we have the N-soliton-like solution of equation (4) from equations (20), (24)
and (25)

L L O, D expl®i(y 03 + Wiy, O]
o P(y, 1) + D1 wi expl®; (v, Dx + Wi(y, 1]
where P(y, 1), ®;(y, t) and W, (y, t) satisfy (25).
In the following, we would like to give some special solutions of equation (25) so that the
corresponding solutions of (4) are found.

uo (26)

Solution 1. We have the solutions from equation (25)

v t—t)P
S L ‘I’i(y,f)=ln%
t—1 (v —yp)'*h
(27
where p(y — auogt) is an arbitrary function of (y — auot), and y;, #; and B; are arbitrary
constants.

P(y,t) = p(y — augt) Oi(y, 1) =
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Therefore, we have the n-soliton-like solution of equation (4) from equations (20), (24)
and (27):

1 X (35— awo) exp[ (55 — auo)r +1n s
o p(y — augt) + Z,N=1 i eXp [(Vt%f” — aug)x +1In (;:i";fjﬁ[ ]

In particular, when N = 1 we have:

+ Ugp. (28)

up

Family A (Shock-like wave solution). When p(y — auot) > 0, u; = 1,

1 — 1 —
Uy = — 4 yl—auo 1 + tanh — 4 yl—auo X
200\ t — 1 2 I —1n

_ +\B
+1In =" Inp(y — auot):| } + uo. (29a)
(y —yD'*P

Family B (Singular soliton-like solution). When p(y — auopt) < 0, u; = 1,

1 [(y—» 1[/y—wm
= — - 1 + coth— —
U 2w < — au0> { co 2 [( — aug | x

(t —10)?
+lnm —1n|p(y —otuot)|:|} + up. (29b)
Solution 2. We have another family of solutions from (25)
P(y, 1) = p(y — auor) O;(y, 1) = 6; = const Wi (y, 1) = ¥i(y — (6; + auo)?)
(30)

where p(y — auot) and ¥;(y — (6; + aup)t) are arbitrary functions of (y — aupt) and
(y — (6; + qup)t) respectively, and 6; is an arbitrary constant.

Therefore, we have another n-soliton-like solution of equation (4) from equations (20),
(24) and (30)

1 Yoiny i expl6ix + Yi(y — (6 + au)n)]
Uy = — N + ugp. (31)
® p(y —auot) + ) ;- i expllix + ¥ (y — (6; + auo)t)]
In particular, when N = 1 we have:
Family C (Shock-like wave solution). When p(y — aupt) > 0, u; = 1,
0 1
Uy = 2—1 1 + tanh E[G]x +¢1(y — (01 +aug)t) —Inp(y — auot)]} + uyg. (32a)
o
Family D (Singular soliton-like solution). When p(y — aupt) < 0, u; = 1,
0 1
Uy = 2—1 1+ cothi[elx +¢1(y — (01 +aupg)t) —In|p(y — otuot)|]} + uyp. (32b)
o

Case 2. We assume that equations (17)—(19) have the following y-linear formal solution with
uop = up(x) which is a solution of equation (4)

N
w(x, y, 1) = P(x. 1)+ p;expl®;(x, 1)y + W, (x,1)] (33)
j=1

where p; = 1, and P(x,1), ©;(x,t) and W, (x, t) are differentiable functions of x and 7 to
be determined later.
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Substituting equation (33) into equations (17)—(19) with symbolic computation, we have
P,=0 1ie. P(x,t) = px)
0;,+0;0;,, =0 (34)
Vi +0;, +0;¥; +aup(x)®; =0

where p(x) is an arbitrary function of x.
Therefore, we have the n-soliton-like solution from equations (20), (33) and (34)

Y 1P+ Z_],-V:l wjl®jx(x, 1)y +Wix(x, 1)]exp[O;(x, 1)y + W;(x, 1)]
a px) + 0y expl®; (x, )x + Wi (x, 1)]

where P(y, 1), ®;(y,t) and ¥, (y, ) satisfy equation (34).
In the following, we would like to give some special solutions of equation (34) so that the
corresponding solutions of equation (4) are found.

+up(x) (35)

Solution 3. We have the solutions from equation (34)

Py =p)  Omn=""Y =m0 a/x o(s) ds

t—t (x — x;)*vi

(36)

where p(x) is an arbitrary function of x, and x;, #; and y; are arbitrary constants.

Therefore, we have the n-soliton-like solution of equation (4) from equations (20), (35)
and (36)

! 14y _ Y
1 P+ Zyzl '“.i(t—)_t, — L — qug(x)) exp [i_;’ y+In (ix[/’))lfy/ —a [T ug(s) ds]

X—Xj (x
usz =

N —x; (t—tj)"
o p(_x) + Zj:] jexp [J;_z’ y+ In 7ij)l+y‘/_ — /X uop(s) dS]

(x

+ug(x). 37

In particular when N = 1 we have:

Family E (Shock-like wave solution). When p(x) > 0, u; = 1,

1 p'(x) y L+y
U = — | — - — aug(x)
200 px) t—1 X — Xq
. hl X—x (t — )" /x (s)ds — In p(x)
X tanh — n — —In
i T o up(s)ds p(x

1 / 1+
+_[19(X)_ y 14w

2a p(x) t—1n X — X o Otl/t()(_x):| +uo(x). (38a)

Family F (Soliton-like solution). When p(x) <0, u; =1,
1 ! 1+
_ 1 _10()6)+ y o Mn e
200 px) t—1 X — Xq

1 — t—)"

x coth— A +In ( D

21 t—1 (x —xtn
1[pPx vy 14y
2 | p(x) t—1 x—2x

uz;

—a/x uo(s) ds —1n|p(x)|}

— omo(x):| +up(x). (38b)
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Solution 4. We have another family of solutions from equation (34)

X A’
P(x,t) = p(x) ®;(x,1) =6; = const W(x, 1) = —Ot/ uop(s)ds — e—jx + At
J
(39)

where p(x) is an arbitrary function of x, and 6; and A; are arbitrary constants.

Therefore, we have the n-soliton-like solution of equation (4) from equations (20), (35)
and (39)

1P (x)+ Z;V=1 [,Lj(—g—‘; — (xuo(x)) exp [ij — a/)‘ uop(s)ds — g—jx +Ajt] @)
Uy = — - - +up(x).
o p(x)+exp[9jy—otfxu0(s)ds—%X+Ajt]
(40)

In particular, when N = 1 we have:

Family G (Shock-like wave solution). When p(x) > 0, u; = 1

Y iACY 1] ann L |6 Co(s)ds — My ke — 1
U4y =" 2 00) +0€M0(X)+9—1 an > ly—ot/ up(s)ds — 9—1x+ 1t —1In p(x)
1 ! A
+ [’;((;)) — qug(x) — 9—]‘] +uo(x). (41a)

Family H (Soliton-like wave solution). When p(x) <0, u; =1

__L[rw 2] o [ 6 “p()ds — My sy —1
M42——2a|:p(x)+05M0(X)+91:|CO 2[1)’-“/ uo(s) 5—9]X+ 1t — an(X)|:|
1 [px) Al
+ T [ ) —aug(x) — 9—11| +up(x). (41b)

Case 3. When u( = constant, we know that equations (17)—(19) have the solution

N
w(x,y,t) =ap+ Zaj explkjx +1;y — (k;jl; +1;aup)t + c] 42)
j=1

where ¢, k;, [; and a; are arbitrary constants.

Thus, we obtain the n-soliton-like solution of equation (4) from equations (20) and (42)

S ajkjexplkix +1;y — (kjl; +Liouo)t +c]

1
ux,y,t)y =— +ug. (43)

Q@ ag+ Z;V:] a; exp[k_,-x + ljy — (kjlj + l_,'()tl/to)t +c]

Therefore, from equation (43) we obtain:

Family I (Shock wave solution). When N = 1, apa; > 0,

(44a)

1
u = —
20

kix +11y — (kily + L)t — ll’lzﬂ +c
1 + tanh 5 0 +ug

which is an isolated wave, localized in a small part of space.
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Family J (Singular soliton-like solution). When N = 1, apa; < 0,

k kix +11y — (kily +liaug)t —In (—2-) + ¢
2= 2—1 I+ coth 5 %) +ug  (44b)
(04

which is a singular soliton-like solution and shows that the solution blows up at the point
(x0, yo) for a certain time ¢t = t.

Family K (Double soliton-like solutions). When N = 2,

1 alkl ek1x+11y—(k111+11au0)l+c + a2k2 ek2x+lzy—(k212+1201ug)t+c
u—= — + ug (45)

a ap+a ek|x+l|yf(k|l|+l|otu0)t+ca2 ek2x+lzy7(kglz+lgau0)t+c

where a; and k;, [; (i = 1,2) are arbitrary constants.

In summary, by using symbolic computation and some simple transformations, we have
investigated many families of explicit and exact solutions of (1 + 2)-dimensional generalized
Burgers equations, which include n-soliton-like solutions, shock-like wave solutions and
singular soliton-like solutions. These solutions may be of great significance in explaining
some physical phenomena. The approach can also be extended to other nonlinear evolution
equations in mathematical physics. Further study is needed to see whether there are other
types of exact solutions.
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